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Transonic flow of dense gases around an airfoil
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Transonic potential flow of dense gases of retrograde type around the leading edge of
a thin airfoil with a parabolic nose is studied. The analysis follows the approach of
Rusak (1993) for a perfect gas. Asymptotic expansions of the velocity potential func-
tion are constructed in terms of the airfoil thickness ratio in an outer region around
the airfoil and in an inner region near the nose. The outer expansion consists of the
transonic small-disturbance theory for dense gases, where a leading-edge singularity
appears. Analytical expressions are given for this singularity by constructing similarity
solutions of the governing nonlinear equation. The inner expansion accounts for the
flow around the nose, where a stagnation point exists. A boundary value problem
is formulated in the inner region for the solution of an oncoming uniform sonic
flow with zero values of the fundamental derivative of gasdynamics (Γ = 0) and the
second nonlinearity parameter (Λ = 0) around a parabola at zero angle of attack.
The numerical solution of the inner problem results in a symmetric flow around
the nose. The outer and inner expansions are matched asymptotically resulting in a
uniformly valid solution on the entire airfoil surface. In the leading terms, the flow
around the nose is symmetric and the stagnation point is located at the leading edge
for every transonic Mach number, and small values of Γ and Λ of the oncoming flow
and any shape and small angle of attack of the airfoil. Furthermore, analysis of the
inner region in the immediate neighbourhood of the stagnation point reveals that the
flow is purely subsonic, approaching critical conditions in the limit of large (scaled)
distances, which excludes the formation of shock discontinuities in the nose region.

1. Introduction
Recent years have shown an increased scientific and technological interest in

the non-classical dynamics and real gas effects in compressible flows of dense gases.
Dense gases are characterized as ordinary single-phase vapours of moderate molecular
weight, operating at pressures and temperatures on the order of those corresponding
to the thermodynamic critical point. At these conditions, the perfect gas law no
longer holds and real gas effects should be carefully investigated. The research toward
understanding the dynamics of dense gases is strongly motivated by their potential
technological advantages, as working fluids, in Rankine cycle turbomachinery over
the classical steam cycles (see the review paper on this subject by Devotta & Holland
1985). These benefits include increased efficiency and extended life cycle of turbines.
Other applications may be found in the heavy-gas wind tunnel designed to get a
better simulation for realistic high-Reynolds-number flows.

Specific interest has been developed in working fluids of retrograde type which
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vaporize when compressed and condense when expanded. We particularly investi-
gate those gases that are characterized by relatively large specific heats (cv), known
as the Bethe–Zel’dovich–Thompson (BZT) fluids (see Bethe 1942; Zel’dovich 1946;
Zel’dovich & Raizer 1966; Thompson 1971; Thompson & Lambrakis 1973, Cramer
& Tarkenton 1992). Recent research has shown that the physical behaviour of these
kind of dense gases of retrograde type can be significantly different from the classical
gasdynamics of perfect gases (see Cramer & Tarkenton 1992; Cramer & Fry 1993;
Schnerr & Leidner 1993). Therefore, the ability to understand the complex phenom-
ena that occur in compressible flows of dense gases and the parameters that govern
them are scientifically interesting and would be essential for future utilization of these
fluids in the design of advanced machinery and in aerospace applications.

In classical gasdynamics, the fluid is treated as a perfect gas. However, for dense
gases operating in the single-phase vapour region near the phase boundary and at
temperatures and pressures on the order of those of the thermodynamic critical point,
real gas effects should be considered. Improved equations of state such as the van der
Waals, Redlich–Kwong (1949) or Martin–Hou (1955) models should be used for a
more accurate description of dense gas flows. One of the main parameters commonly
used to describe the influence of real gas effects is the thermodynamic property

Γ = 1 +
ρ

a

∂a

∂ρ

∣∣∣∣
s

where ρ, a, s are the density, isentropic speed of sound and specific entropy, re-
spectively. A similar parameter was first introduced by Duhem (1909). Owing to
its importance in a wide range of flow problems, Thompson (1971) referred to this
parameter as the fundamental derivative of gasdynamics. This parameter may reflect
the intrinsic gasdynamics nonlinearity. For a perfect gas model, Γ = (γ + 1)/2 is a
constant and greater than 1 (here, γ > 1 is the ratio of specific heats). For dense
gases Γ is no longer a constant, and may become less than 1 or even negative in
a certain range of temperatures and pressures. Fluids, in the single-phase regime,
of retrograde type (the BZT fluids) are characterized by Γ < 0 at densities on the
order of one half to three quarters of the critical values and temperatures around the
critical temperature (see figures 1 and 2 in Cramer & Tarkenton 1992). It is found
that commonly used dense fluids, employed as heat transfer fluids or in Rankine
cycle power systems, such as high molecular hydrocarbons and fluorocarbons can be
identified as BZT fluids (a list of those fluids is given in Cramer 1989, 1991; Cramer
& Tarkenton 1992 and Tarkenton & Cramer 1993).

Thompson (1971) was the first to examine near sonic one-dimensional flows of BZT
gases in a duct. He showed that supersonic flow may be attained only by the way of
a throat when Γ > 0, and by the way of an anti-throat (local maximum in the stream
tube area) when Γ < 0. Thompson also suggested that a fluid with a constant negative
Γ cannot be accelerated isentropically from stagnation to supersonic speeds and for
such conditions a supersonic tunnel cannot be made. Compressible flows of the BZT
fluids also show the non-classical result of the possible formation of expansion shocks,
normally forbidden in the perfect gas theory. On the other hand, classical compression
shocks are actually prohibited by the second law of thermodynamics when Γ < 0.
These non-classical effects for a steady isentropic flow in a duct were explained by
Cramer & Best (1991). A parameter J = 1 − Γ − 1/M2 was introduced to describe
the nonlinearity of the duct flow. It was found that in a perfect gas, or any other fluid
with Γ > 1 as, specifically, J < −1/M2, the Mach number decreases monotonically
with the increase of density. Therefore, in such flows only compression shocks are
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expected to occur. However, for any flow in a duct with Γ < 1, specifically for flows
where Γ < 0, there exists a range of densities where J may become positive and the
Mach number increases when the density increases. In such situations, the flow may
accelerate to supersonic speeds in the regions of compression or the flow may expand
from supersonic to subsonic speed and an expansion shock is, therefore, expected to
occur.

The complex nature of transonic flows of BZT fluids is also found in the nozzle
flow studies of Cramer & Fry (1993) and Kluwick (1993). Newly revealed phenomena
included the existence of expansion shocks that stand upstream of the throat and
flows which contain two or three shocks but no supersonic points. Both phenomena
require the existence of sonic shock waves, i.e. shock waves for which the Mach
number is identically 1 upstream or downstream of the shock, and are only possible
when Γ changes its sign.

Transonic flows of BZT fluids around profiles have recently been studied by
Cramer & Tarkenton (1992), Tarkenton & Cramer (1993). They presented an extended
transonic small-disturbance theory for flows around thin airfoils of thickness ratio
ε� 1. The oncoming flow is near sonic, M∞ ∼ 1, and is also characterized by small
values of Γ , Γ∞ ∼ 0, and the second nonlinearity parameter Λ = ρ(∂Γ/∂ρ), Λ∞ ∼ 0.
The third nonlinearity parameter, Σ = ρ2(∂2Γ/∂ρ2), is considered of order of one,
Σ∞ ∼ O(1). They found significant increase of the critical Mach number in flows of
BZT fluids over profiles. Numerical solutions revealed substantial reductions in the
strength of compression shocks. A further benefit is an evident decrease of the drag
that was found in the numerical study of Morren (1990) using the Euler equations and
a van der Waals equation of state. These computations also revealed the formation
of expansion shocks near the nose of the airfoil in regions where Γ < 0.

The pioneering work of Cramer and co-authors has constructed a framework
for studying transonic flows of BZT fluids around airfoils. In the present paper
we investigate the connections between the transonic small-disturbance theory of
Tarkenton & Cramer (1993) and the numerical solutions of the Euler equations of
Morren (1990). Of specific interest is the flow around the nose of the profile. In
this region the flow changes significantly over a small area and those changes may
affect the flow over the entire profile. One of the open problems to resolve is the
appearance of sonic or supersonic shocks in the nose region. Theoretical work toward
understanding the flow in the nose region can clarify this problem.

Despite being an important problem in the study of the aerodynamic properties of
profiles, to the best of our knowledge the nature of the transonic flow of BZT fluids
around the nose of a thin airfoil has never been addressed and is a great challenge
to solve. The results may add to our understanding of the complicated physics of
compressible flows of dense gases.

The present analysis follows the approach of Rusak (1993) for studying the transonic
flow of a perfect gas around the nose of an airfoil. Asymptotic expansions of the
velocity potential function are constructed in terms of the airfoil thickness ratio
in an outer region around the airfoil and in an inner region near the nose. The
outer expansion consists of the transonic small-disturbance theory for BZT gases,
where a leading-edge singularity appears. Analytical expressions are given for this
singularity by constructing similarity solutions of the governing nonlinear equation.
The inner expansion accounts for the flow around the nose, where a stagnation point
exists. A boundary value problem is formulated in the inner region for the solution
of an oncoming uniform sonic flow with zero values of the fundamental derivative
of gasdynamics and the second nonlinearity parameter around a parabola at zero
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Figure 1. Airfoil problem.

angle of attack. The numerical solution of the inner problem results in a symmetric
flow around the nose. The outer and inner expansions are matched asymptotically
resulting in a uniformly valid composite solution around the entire airfoil. This
composite solution is a good and relatively simple approximation to the solution of
the Euler equations for the entire flow field. It is found that in the leading terms, the
flow around the nose is symmetric and the stagnation point is located at the leading
edge for every transonic Mach number, and small values of Γ and Λ of the oncoming
flow and shape and small angle of attack of the airfoil.

2. Mathematical model
A steady inviscid flow around a two-dimensional thin airfoil with a parabolic nose

is considered in an (x, y)-plane with unit vectors (ex, ey) (figure 1). The flow far
away ahead of the airfoil is assumed to be uniform at speed U∞, density ρ∞, entropy
s∞, speed of sound a∞ and Mach number M∞ ≡ U∞/a∞ ∼ 1. The oncoming flow
is also characterized by small values of the fundamental derivative of gasdynamics
(Γ∞ ∼ 0) and the second nonlinearity parameter (Λ∞ ∼ 0), and order of 1 of the third
nonlinearity parameter (Σ∞ ∼ O(1)). The airfoil shape is given by

B(x, y) = y − εFu,l(x) = 0 for 0 6 x 6 c, (1)

where c is the airfoil chord and ε is the thickness ratio, ε � 1. The functions Fu,l(x)
represent the upper and lower surfaces, respectively. These shape functions are given
by

Fu,l(x) = Ca(x)± c t(x/c)−Θx for 0 6 x 6 c, (2)

where Ca(x) is the camber line function, c t(x/c) is the thickness distribution, Θ = θ/ε
and θ is the angle of attack. Also, t(0) = t(1) = 0 and Ca(0) = Ca(c) = 0. Near the
leading edge as x→ 0 the thickness function changes like c t(x/c) ∼ 2g(cx)1/2 +O(x)
and the camber line function changes like Ca(x) ∼ m1x + O(xq) with (q > 1). Here,
Rc = 2g2ε2c is the radius of curvature of the parabolic nose, g is a given constant
and m1 is the local camber of the airfoil at the leading edge (see Abbott & Doenhoff
1959, pp. 111–118).

The Rankine–Hugoniot relation in Thompson (1984) has been verified to be valid
in our mathematical model. He found that the entropy rise and vorticity generated
by shock waves in transonic flows is of fourth order in the shock strength whenever
Γ is small. Therefore, to the orders of the disturbances in the pressure (p), density
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(ρ) and velocity vector (q) considered here, the flow may be taken as irrotational
and isentropic, i.e. s ∼ s∞ everywhere in the flow domain. The velocity potential
field Φ(x, y) of the flow, where q = ∇Φ, can be described by the full potential-flow
equation:

(a2 − Φ2
x)Φxx − 2ΦxΦyΦxy + (a2 − Φ2

y)Φyy = 0 (3)

and the Bernoulli equation,

h(ρ, s∞) + 1
2
|∇Φ|2 = h∞ + 1

2
U2
∞. (4)

Here, h is the enthalpy, h∞ = h(ρ∞, s∞), a(ρ, s∞) is the thermodynamic speed of sound,

a2 ≡ (∂p/∂ρ)
1/2
s , and p = p(ρ, s∞). The Bernoulli equation relates the disturbances in

the speed of sound to those in Φ through the thermodynamic relations between a
and h. The solution of (3) and (4) should satisfy the kinematic tangency boundary
condition on the airfoil surface,

∇Φ · ∇B = 0 on B = 0. (5)

Also, disturbances must die out at upstream infinity, as x → −∞:Φx → U∞ and
Φy → 0. The Kutta condition is satisfied at a sharp trailing edge. In order to get a
one-valued potential function, the (x, y)-plane is cut along the slipstream that leaves
the trailing edge to infinity and where the potential is allowed to jump due to the
circulation around the airfoil.

Introducing the following non-dimensional variables:

x̄ =
x

c
, ȳ =

y

c
, φ̄ =

Φ−U∞x
U∞c

, ā =
a

a∞
, M2

∞ =
U2
∞
a2
∞

(6)

the non-dimensional forms of (3)–(5) are given by

(M2
∞ + 2M2

∞φ̄x̄ +M2
∞φ̄

2
x̄ − ā2)φ̄x̄x̄ + 2M2

∞(1 + φ̄x̄)φ̄ȳφ̄x̄ȳ = (ā2 −M2
∞φ̄

2
ȳ)φ̄ȳȳ (7)

and

h− h∞
a2
∞

= −M2
∞

(
φ̄x̄ +

φ̄2
x̄ + φ̄2

ȳ

2

)
(8)

with

φ̄ȳ = ε(1 + φ̄x̄)F
′
u,l(x̄) on ȳ = εFu,l(x̄) for 0 6 x̄ 6 1, (9)

φ̄x̄, φ̄ȳ → 0 as x̄→ −∞. (10)

In order to study the transonic flow of BZT gases around a thin airfoil with a
parabolic nose, the potential Φ is approximated by asymptotic expansions in the
limit ε → 0,M∞ → 1, Γ∞ → 0 and Λ∞ → 0 and with the similarity parameters
K = (1−M2

∞)/ε6/5, KΓ = Γ∞/ε
4/5, KΛ = Λ∞/ε

2/5 and Σ∞ fixed. An outer expansion is
constructed in an outer region around the airfoil. There the coordinates (x̄, ỹ = ε3/5ȳ)
are fixed as ε → 0. An inner expansion is constructed in the nose region using
stretched coordinates. There the coordinates (x∗ = x̄/ε2, y∗ = ȳ/ε2) are fixed as ε→ 0.
The various powers in these expansions result from the following asymptotic analysis
(see also Cramer & Tarkenton 1992; Tarkenton & Cramer 1993; Kluwick 1993).
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3. Outer expansion
3.1. Small-disturbance theory

In the outer region around the airfoil, we consider the limit ε → 0,M∞ → 1,
Γ∞ → 0, Λ∞ → 0, where

M2
∞ = 1−Kµ(ε), Γ∞ = KΓγ(ε) + . . . , Λ∞ = KΛλ(ε) + . . . (11)

and (x̄, ỹ = β(ε)ȳ;K,KΓ ,KΛ, Σ∞, Θ) fixed. Here, µ � 1, γ � 1, λ � 1 and β � 1. In
this region, we expect that the flow disturbances created by the airfoil are relatively
small compared to the uniform-stream properties. Therefore, the potential and the
density in the outer region may be approximated by the asymptotic expansions:

Φ = U∞c{x̄+ δ1(ε)φ̄1(x̄, ỹ;K,KΓ ,KΛ, Σ∞, Θ)

+δ2(ε)φ̄2(x̄, ỹ;K,KΓ ,KΛ, Σ∞, Θ)

+δ3(ε)φ̄3(x̄, ỹ;K,KΓ ,KΛ, Σ∞, Θ) + . . .}, (12)

ρ = ρ∞ + l1(ε)ρ1 + l2(ε)ρ2 + l3(ε)ρ3 + . . . . (13)

Here, δ3 � δ2 � δ1 � 1, and l3 � l2 � l1 � 1. Because h = h(ρ, s), the Taylor series
expansion of h may be given by

h(ρ, s = s∞) = h∞ +
∂h

∂ρ

∣∣∣∣
(ρ∞ ,s∞)

(l1(ε)ρ1 + l2(ε)ρ2 + l3(ε)ρ3 + . . .)

+
1

2

∂2h

∂ρ2

∣∣∣∣
(ρ∞ ,s∞)

(l1(ε)ρ1 + l2(ε)ρ2 + . . .)2 +
1

6

∂3h

∂ρ3

∣∣∣∣
(ρ∞ ,s∞)

(l1(ε)ρ1 + . . .)3 + . . . . (14)

From the Gibbs’ equation,

dh = Tds+
dp

ρ
, (15)

the definition of Γ , and (11), since to the orders considered ds ∼ 0, we have

∂h

∂ρ

∣∣∣∣
(ρ∞ ,s∞)

=
a2
∞
ρ∞
,
∂2h

∂ρ2

∣∣∣∣
(ρ∞ ,s∞)

= −3
a2
∞
ρ2
∞

+ O(γ(ε)),
∂3h

∂ρ3

∣∣∣∣
(ρ∞ ,s∞)

= 12
a2
∞
ρ3
∞

+ O(γ(ε)). (16)

Therefore, with the assumption that l21γ � l3 (this will be proved in the next para-
graph), we get

h− h∞
a2
∞

= l1(ε)
ρ1

ρ∞
+ l2(ε)

(
ρ2

ρ∞
− 3

2

ρ2
1

ρ2
∞

)
+ l3(ε)

(
ρ3

ρ∞
− 3

ρ1ρ2

ρ2
∞

+ 2
ρ3

1

ρ3
∞

)
+ . . . . (17)

Equation (17) shows that to the leading order, the enthalpy disturbance can be
approximated by the density disturbance. From (12) and (17), the Bernoulli equation
(8) becomes

l1(ε)

(
ρ1

ρ∞

)
+ l2(ε)

(
ρ2

ρ∞
− 3

2

ρ2
1

ρ2
∞

)
+ l3(ε)

(
ρ3

ρ∞
− 3

ρ1ρ2

ρ2
∞

+ 2
ρ3

1

ρ3
∞

)
+ . . .

= δ1(ε)
(
−φ̄1x̄

)
+ δ1(ε)µ(ε)

(
Kφ̄1x̄

)
+ δ2(ε)

(
−φ̄2x̄ − 1

2
φ̄2

1x̄

)
+δ2(ε)µ(ε)

(
Kφ̄2x̄ + 1

2
Kφ̄2

1x̄

)
+ δ3(ε)

(
−φ̄3x̄ − φ̄1x̄φ̄2x̄

)
+ . . . . (18)

We find that l1(ε) = δ1(ε), l2(ε) = δ2(ε) = l21(ε), l3(ε) = δ3(ε) = l31(ε) and

ρ1

ρ∞
= −φ̄1x̄,

ρ2

ρ∞
= −φ̄2x̄ + φ̄2

1x̄,
ρ3

ρ∞
= −φ̄3x̄ + 2φ̄1x̄φ̄2x̄ − φ̄3

1x̄. (19)
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Here, we also assume that δ1µ� δ3 (this will be proved in the following paragraph).
Equation (19) shows that to the leading order, the density and enthalpy disturbances
can be approximated from the axial velocity disturbance. Because a = a(ρ, s), the
Taylor series expansion of a may be given by

a2(ρ, s = s∞) = a2
∞ +

∂(a2)

∂ρ

∣∣∣∣
(ρ∞ ,s∞)

(l1(ε)ρ1 + l2(ε)ρ2 + l3(ε)ρ3 + . . .)

+
1

2

∂2(a2)

∂ρ2

∣∣∣∣
(ρ∞ ,s∞)

(l1(ε)ρ1 + l2(ε)ρ2 + . . .)2 +
1

6

∂3(a2)

∂ρ3

∣∣∣∣
(ρ∞ ,s∞)

(l1(ε)ρ1 + . . .)3 + . . . . (20)

From the expansions of Γ∞, Λ∞ in (11) and the definition of Σ∞, we have

∂(a2)

∂ρ

∣∣∣∣
(ρ∞ ,s∞)

= 2
a2
∞
ρ∞

(−1 +KΓγ(ε)), (21a)

∂2(a2)

∂ρ2

∣∣∣∣
(ρ∞ ,s∞)

=
a2
∞
ρ2
∞

(6 + 2(KΓγ(ε))
2 − 6KΓγ(ε) + 2KΛλ(ε)), (21b)

∂3(a2)

∂ρ3

∣∣∣∣
(ρ∞ ,s∞)

=
a2
∞
ρ3
∞

(−24 + 2Σ∞ + 8KΓKΛγ(ε)λ(ε)

−14KΛλ(ε)− 6(KΓγ(ε))
2 + 24KΓγ(ε)

)
. (21c)

From (19)–(21) and (7), we can show after some algebra that{
−Kµ(ε) + δ1(ε)γ(ε)2KΓφ̄1x̄ − δ2

1(ε)λ(ε)KΛφ̄
2
1x̄ + δ3

1(ε) 1
3
Σ∞φ̄

3
1x̄

}
δ1(ε)φ̄1x̄x̄ + . . .

= δ1(ε)β
2(ε)φ̄1ỹỹ + . . . . (22)

Therefore, through matching the disturbance scales, we find µ(ε) = δ3
1(ε) = δ1(ε)γ(ε) =

δ2
1(ε)λ(ε) = β2(ε). Now, from the boundary condition (9), we have δ1(ε)β(ε) = ε. As a

result, we have δ1(ε) = l1(ε) = ε2/5, β(ε) = ε3/5, µ(ε) = ε6/5, γ(ε) = ε4/5, λ(ε) = ε2/5

(these also prove the assumptions made above) and

ỹ = ε3/5ȳ, M2
∞ = 1− ε6/5K, Γ∞ = ε4/5KΓ + . . . , Λ∞ = ε2/5KΛ + . . . ,

Φ = U∞c
{
x̄+ ε2/5φ̄1(x̄, ỹ;K,KΓ ,KΛ, Σ∞, Θ) + O(ε4/5)

}
.

}
(23)

Here the perturbation function φ̄1 is described by(
−K + 2KΓφ̄1x̄ −KΛφ̄

2
1x̄ + 1

3
Σ∞φ̄

3
1x̄

)
φ̄1x̄x̄ = φ̄1ỹỹ . (24)

This equation is a modified Kármán–Guderley equation for transonic flows of the BZT
gases and an equivalent version of this equation was previously derived by Kluwick
(1993) and Tarkenton & Cramer (1993) in their transonic small-disturbance theory
for BZT gases. The function φ̄1 should satisfy the following boundary conditions:

φ̄1ỹ(x̄, 0±) = F ′u,l(x̄) for 0 6 x̄ 6 1,

φ̄1x̄, φ̄1ỹ → 0 as x̄→ −∞.

}
(25)

We can also show that under the above approximations the pressure field may be
given by the axial velocity disturbances, p = p∞(ρ∞, s∞) − ρ∞a2

∞ε
2/5φ̄1x̄ + . . . and the

pressure coefficient by cp = (p− p∞)/( 1
2
ρ∞U

2
∞) = −2ε2/5φ̄1x̄ + . . .. Therefore, the Kutta

condition at the airfoil’s trailing edge results in

φ̄1x̄(1, 0
+) = φ̄1x̄(1, 0

−). (26)
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Figure 2. Transonic small-disturbance problem.

Also, to get a one-valued potential function φ̄1, we have φ̄1(x̄, 0
+) − φ̄1(x̄, 0

−) = C
for every x̄ > 1, where C is the circulation around the airfoil (see figure 2). The
fundamental derivative of gasdynamics can also be estimated from the axial velocity
disturbance according to the small-disturbance theory: Γ = ε4/5(KΓ −KΛφ̄1x̄) + . . ..

3.2. Nose singularity

In this subsection, we study the flow near the airfoil’s parabolic nose according to the
small-disturbance theory. The solution of (24)–(26) in the nose region (as (x̄, ỹ)→ 0)
is approximated by the sum of similarity terms,

E1/3φ̄1 = ỹmf(ξ) + ..., ξ =
x̄

ỹk
(27)

where E = Σ∞/3 > 0 and k, m are constants and f is the similarity function.
From (24) and (27), it is found that in the leading order the effects of the terms
Kφ̄1x̄x̄, KΓ φ̄1x̄φ̄1x̄x̄ and KΛφ̄

2
1x̄φ̄1x̄x̄ are smaller than the effect of Eφ̄3

1x̄φ̄1x̄x̄. Therefore,
m = 1

3
(5k − 2) and f(ξ) is described by the nonlinear differential equation

(f3
ξ − k2ξ2)fξξ − 7

3
k(1− k)ξfξ + 5

9
(1− k)(5k − 2)f = 0. (28)

From (27), the approximation of φ̄1ỹ as ỹ → 0± and x̄ > 0 (as ξ → +∞) gives

φ̄1ỹ(x̄, 0±) = E−1/3x̄5(k−1)/3kξ3k/[5(k−1)]
[

1
3
(5k − 2)f − kξfξ

]
(29)

and from the boundary condition (25) and the assumptions on the airfoil shape near
the leading edge, we find that 5(k − 1)/3k = −1/2, or k = 10/13 and m = 8/13.
Therefore,

E1/3φ̄1 = ỹ8/13f(ξ) + ..., ξ =
x̄

ỹ10/13
(30)

and from (28)

(f3
ξ − 100

169
ξ2)fξξ − 70

169
ξfξ + 40

169
f = 0. (31)

In order to solve (31), the following hodograph analysis is used. As the local flow
near the airfoil leading edge approaches stagnation, (24) may be reduced to

Eφ̄3
1x̄φ̄1x̄x̄ − φ̄1ỹỹ = 0 (32)
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which also describes a sonic small-disturbance flow with K = KΓ = KΛ = 0. Let

w ≡ E1/3φ̄1x̄, v ≡ E1/3φ̄1ỹ

then, (32) is equivalent to the modified Kármán–Guderley system:

w3wx̄ − vỹ = 0, wỹ − vx̄ = 0. (33)

The transformation from the transonic plane, (w(x̄, ỹ), v(x̄, ỹ)), to the hodograph plane,
(x̄(w, v), ỹ(w, v)), results in a modified Tricomi system:

w3ỹv − x̄w = 0, x̄v − ỹw = 0 (34)

or in the modified Tricomi equation: w3ỹvv − ỹww = 0. We define the variables

τ ≡ 2
5
(−w)5/2 (35)

and (r, α) through

τ = r cos α > 0 , v = r sin α, − 1
2
π < α < 1

2
π. (36)

The system (34) becomes

x̄r =
(

5
2

)3/5
r−2/5(cos3/5 α)ỹα, x̄α = −

(
5
2

)3/5
r8/5(cos3/5 α)ỹr. (37)

Equation (37) may be reduced to

ỹrr +
8

5r
ỹr +

1

r2
ỹαα −

3

5r2
(tan α)ỹα = 0. (38)

For solving ỹ, we suggest the separation-of-variables solution

ỹ = R(r)A(α) (39)

where the functions R(r) and A(α) are described by

r2R′′ + 8
5
rR′ − ν2R = 0, A′′ − 3

5
(tan α)A′ + ν2A = 0. (40)

Here, ν is a constant to be determined. Let R = rd, then d(d− 1) + 8
5
d− ν2 = 0 and

d = − 3
10
± η, where η = ( 9

100
+ ν2)1/2. Since we look for a nose singularity, R → ∞ as

r → 0, the only valid solution is

R = r−3/10−η. (41)

For solving A(α), let z = sin2 α = (v/r)2. Then from (40), we have

z(1− z)Azz +
(

1
2
− 13

10
z
)
Az + 1

4
ν2A = 0. (42)

This is the standard hypergeometric equation (Abramowitz & Stegun 1965), the
solution of which is given by

A(α) = c1 sin α F1 + c2 F2 (43)

where

F1 = F
(

13
20

+ 1
2
η, 13

20
− 1

2
η; 3

2
; sin2 α

)
,

F2 = F
(

3
20

+ 1
2
η, 3

20
− 1

2
η; 1

2
; sin2 α

)
and c1, c2 are constants to be determined. So,

ỹ = R(r)A(α) = c1 r
−3/10−η(sin α F1 + c̃2 F2) (44)



10 Z. Rusak and C.-W. Wang

where c̃2 = c2/c1. Now, from (27), we have

w = E1/3φ̄1x̄ = ỹm−kfξ = ỹ2(k−1)/3fξ,

v = E1/3φ̄1ỹ = ỹm−1
(
mf − kξfξ

)
= ỹ5(k−1)/3

[
1
3
(5k − 2)f − kξfξ

] } (45)

and r = ỹ5(k−1)/3fn1(ξ), tan α = fn2(ξ) where the functions fn1(ξ), fn2(ξ) are related to
f and fξ . Therefore, we find that

ỹ = r3/[5(k−1)]f̄n1(α), ξ = f̄n2(α). (46)

Here, f̄n1 and f̄n2 are the inverse functions of fn1 and fn2 respectively. The comparison
between (44) and (46) gives − 3

10
− η = 3/[5(k − 1)]. For the given airfoil, since

k = 10/13, we have η = 23/10 and ν2 = 26/5. Therefore,

ỹ = c1 r
−13/5Ã(α),

Ã(α) = sin α F
(

9
5
,− 1

2
; 3

2
; sin2 α

)
+ c̃2F

(
13
10
,−1; 1

2
; sin2 α

)
.

}
(47)

From the solution for ỹ and (37), we can integrate x̄:

x̄ = − 1
2

(
5
2

)3/5
c1 r

−2 cos8/5 α
dÃ(α)

d(sin α)
(48)

where

dÃ(α)

d(sin α)
= F

(
9
5
,− 1

2
; 1

2
; sin2 α

)
− 26

5
c̃2 sin α. (49)

From (30), (47) and (48), we have a solution for ξ(α):

ξ(α) = −
(

5
2

)3/5
c

3/13
1 cos8/5 α dÃ(α)/d(sin α)

2(Ã(α))10/13
. (50)

Also, from (45) we find

f =
3

5k − 2

(
vỹ5(1−k)/3 + kξwỹ2(1−k)/3) (51)

and using (35), (36), (47) and (50), we find the solutions for f(α),

f(α) = 13
8
c

5/13
1

sin α Ã(α) + 25
26

cos2 α dÃ(α)/d(sin α)

(Ã(α))8/13
(52)

and fξ(α),

fξ = −( 5
2
)2/5c

2/13
1 Ã2/13(α) cos2/5 α. (53)

Equations (50) and (52) give an exact analytical solution of (31) and define a
parametric representation of the similarity function f(ξ) in terms of the hodograph
similarity variable α. It should be noted that the constants c1 and c̃2 that appear in
A(α) are yet to be determined.

The solution ỹ in (47) is given by a linear combination of symmetric and unsym-
metric functions, in terms of the hodograph similarity variable α (see figure 3). The
parameter α is determined in the range α1 6 α 6 α3, where α1 < 0, α2, and α3 > 0 are
the first three roots around α = 0 of the equation ỹ = 0 or Ã(α) = 0. It is clear that
the three roots are functions of c̃2 only. In the hodograph plane the lines α = α1 and
α = α3 represent the boundary curves of the lower and upper surfaces of the airfoil
as x̄ → 0. The third (intermediate) root, α = α2, represents the x̄-axis ahead of the
airfoil.
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α1
α2 α3

A

α

0.4

0

–0.4

–0.8

–1.0

F2

sin αF1

1.0

Figure 3. Mathematical diagram of function A(α) vs. α.

The substitution of (30), (50), (52) and (53) into (45) results in the velocity pertur-
bations in the leading-edge region

w = −( 5
2
)2/5c

2/13
1 ỹ−2/13 Ã2/13(α) cos2/5 α

= −
(c1

x̄

)1/5

( 1
2
)1/5( 5

2
)13/25

[
cos18/25 α

(
− dÃ(α)

d(sin α)

)1/5
]
, (54a)

v = c
5/13
1 ỹ−5/13 Ã5/13(α) sin α =

(c1

x̄

)1/2

( 1
2
)1/2( 5

2
)3/10

[
sin α cos4/5 α

(
− dÃ(α)

d(sin α)

)1/2
]
.

(54b)

As ỹ → 0± and x > 0 (as ξ → ∞) then α → α1,3(c̃2). From the wing shape near the
leading edge, equations (25) and (54b) give

v(x̄, 0±) =
(c1

x̄

)1/2

( 1
2
)1/2( 5

2
)3/10

[
sin α cos4/5 α

(
− dÃ(α)

d(sin α)

)1/2
]
α→α1,3(c̃2)

+ . . .

= E1/3g
( c
x̄

)1/2

+ . . . . (55)

Therefore,

c1 = 2E2/3
(

2
5

)3/5 g2c[
sin2 α cos8/5 α

(
−dÃ(α)/d(sin α)

)]
α→α1,3(c̃2)

. (56)

It can be shown that[
− dÃ(α)

d(sin α)

]
α→α1,3(c̃2)

=

[
1

cos8/5 α
(

13
5

sin2 α− 1
)]

α=α1,3(c̃2)

(57)

and so,

c1 = 2E2/3
(

2
5

)3/5
g2c

(
13

5
− 1

sin2 α

)
α=α1,3(c̃2)

. (58)
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Figure 4. First-order similarity function f(ξ).

Since α1(c̃2) 6= α2(c̃2) for any c2 6= 0 and the solution has to be continuous across the
(x̄ < 0) axis as ỹ → 0±, it is found that the tangency boundary condition (25) or (55)
can be satisfied consistently if and only if c̃2 = 0. This means that

Ã(α) = sin α F
(

9
5
,− 1

2
; 3

2
; sin2 α

)
(59)

where −α3 6 α 6 α3 and α3 is the solution of the equation F
(

9
5
,− 1

2
; 3

2
; sin2 α

)
= 0,

α3 = 75.383226◦ and α2 = 0. In summary, the leading term of the transonic small-
disturbance flow around the parabolic nose is given by

E1/3φ̄1 = ỹ8/13f(ξ) + . . . ,

ξ(α) =− 1
2

(
5
2

)3/5
c

3/13
1

cos8/5 α F( 9
5
,− 1

2
; 1

2
; sin2 α)

sin10/13 α F10/13( 9
5
,− 1

2
; 3

2
; sin2 α)

,

f(α) = c
5/13
1

26 sin2 αF( 9
5
,− 1

2
; 3

2
; sin2 α) + 25 cos2 α F( 9

5
,− 1

2
; 1

2
; sin2 α)

16[sin α F( 9
5
,− 1

2
; 3

2
; sin2 α)]8/13

,


(60)

where c1 = 1.768163g2c. The function f(ξ) is described in figure 4. It is a monotonically
decreasing function. This flow is symmetric about the x̄-axis.

From (45), (54), (57) and (58), we can calculate the distribution of cp and Γ , on the
airfoil surface and near leading edge, from the transonic small-disturbance theory for
BZT gases,

cp ∼ 2ε2/5
(

5
2

)2/5
E−1/5(g2c)1/5 cot2/5 α3 x

−1/5 + . . .

= 1.685483E−1/5(ε2g2c)1/5 x−1/5 + . . . ,

Γ ∼ ε4/5
(
KΓ +KΛ

(
5
2

)2/5
E−1/5(g2c)1/5 cot2/5 α3 x

−1/5 + . . .
)

+ . . .

= ε4/5
(
KΓ + 0.842742KΛE

−1/5(g2c)1/5 x−1/5 + . . .
)
.


(61)

We can see that on the airfoil surface, both the pressure and the fundamental derivative
of gasdynamics are symmetric near the leading edge and independent of the angle of
attack. Also, both parameters have a leading-edge singularity and describe a subsonic
flow with no shocks in the vicinity of the leading edge.
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The results can be summarized as follows. From (12) and (60), the potential Φ in
the outer region can be approximated in the leading-edge region as (ε → 0,M∞ →
1, Γ∞ → 0, Λ∞ → 0), with (x̄, ỹ;K,KΓ ,KΛ, Σ∞, Θ) fixed, by the asymptotic expansion

Φ ∼ U∞c
{
x̄+

ε2/5

E1/3
ỹ8/13f(ξ) + . . .

}
(62)

where ξ = x̄/ỹ10/13. Equation (62) shows that in the leading-edge region as both x̄
and ỹ tend to zero, the velocities in the x̄- and ỹ-directions, as well as the pressure and
Γ , become singular, specifically on the airfoil surface. This singularity implies that
the disturbances from the uniform flow properties become relatively large near the
nose of the airfoil. Therefore, the transonic small-disturbance theory cannot properly
represent the flow in this region.

There is also a misordering in the approximation (62) in the magnitude of the
disturbance for every ξ when both x̄ and ȳ are smaller than ε2g2c. Therefore, a
rescaling in the radial direction only is needed, x∗ = x̄/ε2, y∗ = ȳ/ε2, to account for
the local flow around the airfoil nose, where a stagnation point exits.

4. Inner expansion
In the inner region, around the parabolic nose of the airfoil, we expect that the flow

disturbances created by the airfoil are relatively large compared to the uniform-stream
properties. Therefore, the asymptotic expansion of the potential Φ is given in the limit
(ε → 0,M∞ → 1, Γ∞ → 0, Λ∞ → 0), with (x∗, y∗;K,KΓ ,KΛ, Σ∞, Θ) fixed, in the form
of

Φ(x, y) = U∞c ε
2
(
x∗ + φ0

(
x∗, y∗

))
+ . . . . (63)

Here, we expect that φ0 (x∗, y∗) describes large variations. From (3), (4) and (63), we
have the governing equation(

a2

U2
∞
− (1 + φ0x∗)

2

)
φ0x∗x∗ − 2(1 + φ0x∗)φ0y∗φ0x∗y∗ +

(
a2

U2
∞
− φ2

0y∗

)
φ0y∗y∗ = 0 (64)

and the Bernoulli equation

h(ρ, s∞) + 1
2
U2
∞
(
(1 + φ0x∗)

2 + φ2
0y∗

)
= h∞ + 1

2
U2
∞. (65)

Here the speed of sound a(x∗, y∗) is calculated from the thermodynamic relation
between a and h. The boundary condition (5) over the airfoil surface becomes, in the
leading order,

φ0y∗
(
x∗, y∗ = ±2g x∗1/2

)
∓ g

x∗1/2

[
1 + φ0x∗

(
x∗, y∗ = ±2g x∗1/2

)]
= 0. (66)

The far-field condition for the inner problem is (φ0x∗ , φ0y∗) → 0 as x∗ → −∞. The
problem given by (64)–(66) describes, in the (x∗, y∗)-plane, a sonic uniform flow
U∞ex∗ around an infinite parabola surface y∗ = ±2g x∗1/2 (see figure 5). The far-field
behaviour of the φ0 as |x∗| → ∞ or |y∗| → ∞ has to be specified in order to obtain a
well-defined inner problem.

In the far field of the inner region, and only there, we expect that the inner
flow disturbances are relatively small compared to the uniform-stream properties.
Specifically, we expect that φ0x∗ � 1 and φ0y∗ � 1. Therefore, we can approximate
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Figure 5. Parabolic-nose problem (the inner problem).

the speed of sound in the far field of the inner region by

a2

U2
∞

=
(
1 + 2φ0x∗ + φ2

0x∗ − 1
3
Σ∞φ

3
0x∗

)
+ O(ε2/5). (67)

Therefore, as |x∗| → ∞ or |y∗| → ∞, equation (64) becomes

φ0y∗y∗ − E φ3
0x∗φ0x∗x∗ = 2φ0y∗φ0x∗y∗ + 2φ0x∗φ0y∗φ0x∗y∗

−2φ0x∗φ0y∗y∗ − φ2
0x∗φ0y∗y∗ + E φ3

0x∗φ0y∗y∗ + φ2
0y∗φ0y∗y∗ . (68)

As |x∗|, |y∗| increase, the potential function, φ0, is assumed to be a weakly nonlinear
function given by a basic function φ00 and a correction function φ01, where φ00 � φ01,

φ0(x
∗, y∗) ∼ φ00(x

∗, y∗) + φ01(x
∗, y∗). (69)

The function φ00 is found from

E φ3
00x∗φ00x∗x∗ − φ00y∗y∗ = 0,

φ00y∗
(
x∗, y∗ = ±2g x∗1/2

)
= ± g

x∗1/2
,

(φ00x∗ , φ00y∗)→ 0 as (|x∗| , |y∗| → ∞).

 (70)

It can be shown that the solution of (70) is

φ00 = E−1/3y∗
8/13

f(ξ∗) where ξ∗ =
x∗

y∗10/13
. (71)

Here f and ξ∗(= ξ) are given by (60) (see the outer expansion). It can also be shown
that the function φ01 changes like y∗6/13 as |y∗| increases, which proves the assumption
in (69). This result actually shows that in the far field of the inner region the flow is
sonic, K = 0, and also characterized by the thermodynamic conditions KΓ = KΛ = 0.

From (63), (69) and (71), the potential Φ in the inner region can be approximated,
as (ε → 0,M∞ → 1, Γ∞ → 0, Λ∞ → 0) with (x∗, y∗;K,KΓ ,KΛ, Σ∞, Θ) fixed, and as
(|x∗| , |y∗|)→∞, by the asymptotic expansion

Φ(x, y) = U∞cε
2
(
x∗ + E−1/3y∗

8/13
f(ξ∗) + . . .

)
+ . . . . (72)
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To summarize the inner problem, the potential Φ in the inner region is governed
by equations (64) and (65), boundary condition (66) and far-field behaviour (72).
This problem, in the inner region, describes an oncoming uniform sonic flow with the
thermodynamic properties Γ∞ = Λ∞ = 0 around an infinite parabola surface.

5. Matching
The matching of the outer and inner asymptotic expansions is carried out with

the help of an intermediate region. There, xη = x̄/η(ε), yη = ȳ/η(ε) are fixed in the
limit (ε→ 0,M∞ → 1, Γ∞ → 0, Λ∞ → 0) as well as the parameters (K,KΓ ,KΛ, Σ∞, Θ).
The region η(ε) is chosen such that ε2 � η(ε) � 1, and as ε → 0, η(ε)/ε2 → ∞.
Then x̄ = η(ε)xη → 0 and ỹ = η(ε)ε3/5yη → 0 whereas |x∗| = (η(ε)/ε2) |xη| → ∞ and
|y∗| = (η(ε)/ε2) |yη| → ∞. Also, we can show that ξ = ξ∗. The region η(ε) represents
a whole-order class of limits between the inner and outer and is called the overlap
region. For matching, the expansions must read the same to a certain order when
expressed in the (xη, yη) coordinates. From (62) and (72) we find that:

outer expansion

Φ(x, y) = U∞c
{
ηxη + ε2/5E−1/3

(
ε3/5ηyη

)8/13
f(ξ) + . . .

}
⇔

inner expansion

Φ(x, y) = U∞cε
2

{
ηxη

ε2
+ E−1/3

(ηyη
ε2

)8/13

f(ξ∗) + . . .

}
.

It is clear that the leading terms in the two expansions match. The matching
between the expansions shows a uniform behaviour of the potential Φ as well as the
thermodynamic flow properties between the inner and outer regions.

6. Numerical solution of the inner problem
The inner potential flow problem described by (64)–(66) and (72) is equivalent to

solving the Euler equations of an oncoming uniform sonic flow with Γ∞ = Λ∞ = 0
around an infinite parabola surface. We used the two-dimensional and steady Euler
equations numerical solver from Morren (1990). This computer code is a modified
version of Jameson & Yoon’s (1986) FLO52 finite volume code to enable modelling
the flow of a dense retrograde gas near the saturated vapour curve and the critical
pressure region. In this code the thermodynamic equation of state is described by the
van der Waals equation (see, for example, Moran & Shapiro 1992)

p =
ρRT

1− bρ − αρ
2. (73)

Here R is the gas constant, R = R̄/M (R̄ is the universal gas constant and M is the
gas molecular weight). The coefficients α and b are corrections for the intermolecular
forces of attraction and repulsion between the molecules, and for the volume occupied
by the molecules. These coefficients can be evaluated from the thermodynamic critical
point data (pc, ρc) of the substance,

α =
27

64

R2T 2
c

pc
, b =

1

8

RTc

pc
=

1

3ρc
.
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Figure 6. Numerical solution of sonic flow around the parabola surface.

The critical compressibility factor, Zc, for van der Waals gases is

Zc =
pc

RTcρc
= 0.375.

The analysis of Morren (1990) also assumes that the specific heat for constant volume,
cv , is constant for all pressures and densities.

For the case of the inner flow problem where Γ∞ = Λ∞ = 0, we can show (see the
Appendix) that

ᾱ =
αρ2
∞

p∞
=

16
(
1 + R/cv

) (
1 + R/2cv

)
11
(
1− R/cv

) (
1 + 5R/11cv

) , b̄ = bρ∞ =
1− R/cv

4
(74)

and using the critical compressibility factor we then have the oncoming uniform flow
with density and pressure in the form

ρ∞

ρc
= 3b̄,

p∞

pc
= 27

b̄2

ᾱ
. (75)

The numerical solution of the oncoming sonic flow with R/cv = 0.02 (or with
ρ∞/ρc = 0.735, p∞/pc = 1.0696) around the parabola surface results in the pressure,
density, Mach number and Γ distributions shown in figure 6. In this figure the results
are presented along the x∗-axis when x∗ < 0 and over the parabola surface when
x∗ > 0. We can see that the flow is subsonic everywhere. It decelerates to stagnation at
the parabola nose and then accelerates back to sonic flow. The pressure, density and
Γ increase to their stagnation values at the parabola leading edge and then decrease
back to their far-field values.

Figure 7 shows the comparative calculations of the pressure ratio, Mach number
and Γ between the parabolic configuration and the NACA0012 airfoil given for a
uniform stream with M∞ = 1.0, Γ∞ = Λ∞ = 0, R/cv = 0.02 and zero angle of attack.
In this figure the solution of the various parameters are given along the (−x)-axis
when x < 0 and over the surfaces when x > 0. It is recognized that these two sets
of solutions have similar distributions of each property up to about x/c = 0.1. In a
region around the leading edge of about 2% of the airfoil’s chord, which is of the
order of the size of the inner region, the parabola solution is especially close to the
solution of the Euler equations. These results suggest that, indeed, in the inner region
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Figure 7. Comparison of the solutions of a sonic flow around a parabola and around a
NACA0012 airfoil in the nose region.

the solution of the Euler equations for the airfoil is dominated by the solution of the
parabola problem.

7. A uniformly valid solution
A uniformly valid solution for the potential Φ can be constructed from the outer

and inner expansions, by adding the two together and subtracting the common part
in the intermediate region where the two solutions match. The composite solution is
given by

Φ(x, y; ε,M∞, Θ, Γ∞, Λ∞, Σ∞) ∼ U∞c
{
x̄+ ε2/5φ̄1(x̄, ỹ;K,KΓ ,KΛ, Σ∞)

+ε2
(
x∗ + φ0(x

∗, y∗)
)
− Φc.p.

}
(76)

where the common part is

Φc.p. = ηxη + E−1/3η8/13ε10/13y8/13
η f

(( η
ε2

)3/13

ξη

)
, ξη =

xη

y
10/13
η

. (77)

From the composite solution (76) and (77) and the Bernoulli equation (8) the
enthalpy in the flow field may be approximated by

h− h∞
a2
∞

=
h∗(x∗, y∗)− h∞

a2
∞

+
(
1 + φ0x∗(x

∗, y∗)
) hTSD − hc.p.

a2
∞

+ . . . (78)

where h∗(x∗, y∗) and (1 + φ0x∗(x
∗, y∗)) are the enthalpy and axial velocity component

in the inner flow problem, respectively. Also, (hTSD − h∞)/a2
∞ = −ε2/5φ̄1x̄ is the

enthalpy in the outer (transonic small-disturbance) flow problem and (hc.p.−h∞)/a2
∞ =

−ε2/5E−1/3ỹ−2/13fξ is the enthalpy of the common part in the overlap region. Equation
(78) shows that the enthalpy at any point is composed of two main effects of the
parabola problem and the small-disturbance problem. As the leading edge of the
airfoil is approached, (x, y) → 0 or (x2 + y2)1/2 < ε2g2c, the common-part enthalpy
(hc.p.) cancels the nose singularity of the outer-region enthalpy. Also, in this region
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the axial velocity (1 + φ0x∗(x
∗, y∗)) is small and tends to zero near the stagnation

point. Therefore, the dominant term in the leading-edge region is the inner-region
enthalpy h∗. As (x, y) increase beyond the leading-edge region ((x2 + y2)1/2 � ε2g2c),
the axial velocity (1 + φ0x∗(x

∗, y∗)) tends to 1 and the common-part enthalpy cancels
the inner-region enthalpy (h∗). Therefore, the dominant term outside the leading-edge
region is the transonic small-disturbance term (hTSD). In the intermediate region the
enthalpy changes uniformly from h∗ to hTSD .

From the solution of the enthalpy (78) and the thermodynamic relations h(ρ, s∞)
and p(ρ, s∞), we can approximate first the distribution of density and then pressure
in the entire flow field. These thermodynamic relations, however, may be relatively
complicated and, therefore, no general formula is given to approximate the density
and pressure. For the case where the van der Waals equation of state is used these
relations are given in the Appendix.

8. Conclusions
The transonic flow of BZT gases around a thin airfoil with a parabolic nose

can be analysed by matched asymptotic methods. Asymptotic expansions of the
velocity potential function are constructed in terms of the airfoil thickness ratio
at an outer region around the airfoil and in an inner region near the nose. The
outer expansion consists of the transonic small-disturbance theory for BZT gases of
Tarkenton & Cramer (1993). Similarity solutions of the governing nonlinear equation
(which is a modified version of the Kármán–Guderley equation) are found using
a transformation to the hodograph plane. Analytical expressions are given for the
leading-edge singularity in the outer expansion of the pressure and the fundamental
derivative of gasdynamics (see equations (60) and (61)). A well-defined inner problem
that matches the outer expansion is constructed. In the inner region near the nose of
the airfoil, of a radius of ε2g2c, the flow can be approximated by the solution of an
oncoming uniform sonic flow with Γ∞ = Λ∞ = 0 around an infinite parabola surface.
The numerical solution of the inner flow results in symmetric pressure, density, Mach
number and Γ distributions on the parabolic nose. The flow near the airfoil leading
edge is subsonic without any sonic or supersonic shock waves. From the outer
and inner solutions a uniformly valid solution of the flow field around the entire
airfoil can be given. This composite solution is relatively simple and provides a good
approximation to the solution of the Euler equations, specifically of the enthalpy and
pressure distributions over the airfoil.

The authors would like to thank Professor Mark S. Cramer for providing them
with the computer code of Morren (1990). The second author (C.-W. Wang) wishes
to thank the Chung–Cheng Institute of Technology (CCIT) in Taiwan for supporting
his graduate studies.

Appendix
We derive here the thermodynamic fundamental derivative, Γ , and the second

derivative, Λ, for a van der Waals gas. The general form of entropy in terms of the
pressure, temperature and density is given by

ds = cv
dT

T
+

(
∂p

∂T

)
ρ

dρ

ρ2
.
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From the van der Waals equation of state (73) we have(
∂p

∂T

)
ρ

=
ρR

1− bρ ,

and so

ds = cv
dT

T
−
(

R

1− bρ

)
dρ

ρ
.

Integrating this equation with respect to a reference state where ρr = ρ∞ and sr = s∞,
we have

s− s∞
cv

= ln

(
T

T∞

)
+
R

cv
ln

[(
1− bρ
ρ

)(
ρ∞

1− bρ∞

)]
.

Here, from (73)

T∞ =
(1− bρ∞)(p∞ + αρ2

∞)

ρ∞R
.

Using the definitions

ρ̄ =
ρ

ρ∞
, p̄ =

p

p∞
, ā2 =

a2

a2
∞
, ᾱ =

αρ2
∞

p∞
, b̄ = bρ∞,

the entropy equation is

s̄ ≡ exp

(
s− s∞
cv

)
=

(
ρ̄

1− b̄
1− b̄ρ̄

)1+R/cv (
1 + ᾱ

p̄+ ᾱρ̄2

)
.

Thus, the non-dimensional pressure is

p̄ =

(
1 + ᾱ

s̄

)(
ρ̄

1− b̄
1− b̄ρ̄

)1+R/cv

− ᾱρ̄2.

From this relation the non-dimensional speed of sound is

ā2 ≡
(
∂p̄

∂ρ̄

)
s̄

=

(
p̄+ ᾱρ̄2

ρ̄(1− b̄ρ̄)

)(
1 +

R

cv

)
− 2ᾱρ̄ = (1− b̄ρ̄)−2−R/cv ρ̄R/cvN − 2ᾱρ̄

where

N =

(
1 + ᾱ

s̄

)
(1− b̄)1+R/cv

(
1 +

R

cv

)
= constant.

Therefore,

∂ā

∂ρ̄

∣∣∣∣
s̄

=
N

2ā
ρ̄R/cv (1− b̄ρ̄)−3−R/cv

(
2b̄+

R

cvρ̄

)
− ᾱ

ā

and the fundamental derivative of gasdynamics, Γ , is

Γ =
ρ̄

ā

{
Nρ̄R/cv−2(1− b̄ρ̄)−3−R/cv

(
1 +

R

2cv

)
− 3

ᾱ

ρ̄

}
.

At the far field, where ρ̄ = p̄ = s̄ = 1 and Γ∞ = 0, we have

b̄ = 1−
[(

1 + ᾱ

3ᾱ

)(
1 +

R

cv

)(
1 +

R

2cv

)]1/2

.
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Also, from the formula for Γ ,

Λ =
∂Γ

∂ρ̄
= −Γ

ā
+
N

ā
ρ̄R/cv−2(1− b̄ρ̄)−4−R/cv

(
1 +

R

2cv

)(
R

cv
− 1 + 4b̄ρ̄

)
.

For the far-field conditions of Γ∞ = Λ∞ = 0, we find

b̄ =
1− R/cv

4

and

ᾱ =
16
(
1 + R/cv

) (
1 + R/2cv

)
11
(
1− R/cv

) (
1 + 5R/11cv

) .
Also, the general form of the internal energy (u) in terms of the pressure, tempera-

ture and density is given by

du = cvdT −
(
T
∂p

∂T ρ
− p
)

dρ

ρ2
.

For the van der Waals gas model with the assumption of a constant cv , we find

u− u∞ = cv(T − T∞)− α(ρ− ρ∞)

and from enthalpy definition

h− h∞ = cvT∞

(
T

T∞
− 1

)
− 2α(ρ− ρ∞) +

RT∞

1− bρ∞

(
T

T∞

1− bρ∞
1− bρ − 1

)
.

Using the van der Waals equation (73) and the formula for p̄ derived above, we can
compute

T

T∞

∣∣∣∣
s=s∞

=

(
ρ

ρ∞

1− bρ∞
1− bρ

)R/cv
from which the enthalpy as function of density in an isentropic flow s = s∞ can be
computed.
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